Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38353920

RESUMO

BACKGROUND: Longstanding inequities in the USA have resulted in the disproportionate impact of COVID-19 on Black Americans. Coupled with medical mistrust, COVID-19 vaccine uptake is lower in Black populations. METHODS: We sought to understand the perspectives of Black parents on the COVID-19 pandemic, COVID-19 vaccination for themselves and their children, and trust with the medical community. Using qualitative methodology, we conducted in-depth semi-structured in-person interviews of Black parents of children admitted to the inpatient pediatric units in our tertiary academic medical center in Connecticut from July to November 2021. We used the grounded theory approach, and the constant comparative method until saturation was reached. RESULTS: We interviewed 20 parents who identified as Black; 50% were vaccinated against COVID-19. The following 5 themes and sub-themes emerged: (1) mixed feelings influenced COVID-19 vaccine decision-making ranging from much needed relief and feelings of uncertainty, distrust, and fear; (2) COVID-19 vaccine uptake was influenced by individual and family's health concerns and job or school mandates; (3) deferring the COVID-19 vaccine was influenced by the perception of risk and concerns about vaccine integrity; (4) institutional mistrust within the Black community bred by systemic racism influenced vaccine decision-making; and (5) conflicted feelings about the COVID-19 vaccine for their child. CONCLUSION: Our findings reiterate the complexities around vaccine decision-making and underscore the importance of recognizing the pervasive influence of institutional mistrust when counseling Black families about the COVID-19 vaccine.

2.
Anal Chem ; 95(38): 14430-14439, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695851

RESUMO

Rapid molecular profiling of biological tissues with picosecond infrared laser mass spectrometry (PIRL-MS) has enabled the detection of clinically important histologic types and molecular subtypes of human cancers in as little as 10 s of data collection and analysis time. Utilizing an engineered cell line model of actionable BRAF-V600E mutation, we observed statistically significant differences in 10 s PIRL-MS molecular profiles between BRAF-V600E and BRAF-wt cells. Multivariate statistical analyses revealed a list of mass-to-charge (m/z) values most significantly responsible for the identification of BRAF-V600E mutation status in this engineered cell line that provided a highly controlled testbed for this observation. These metabolites predicted BRAF-V600E expression in human melanoma cell lines with greater than 98% accuracy. Through chromatography and tandem mass spectrometry analysis of cell line extracts, a 30-member "metabolite array" was characterized for determination of BRAF-V600E expression levels in subcutaneous melanoma xenografts with an average sensitivity and specificity of 95.6% with 10 s PIRL-MS analysis. This proof-of-principle work warrants a future large-scale study to identify a metabolite array for 10 s determination of actionable BRAF-V600E mutation in human tissue to guide patient care.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Melanoma/genética , Espectrometria de Massas em Tandem , Extratos Celulares , Mutação , Lipídeos
3.
Nat Commun ; 14(1): 2601, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147298

RESUMO

Activating point mutations in Anaplastic Lymphoma Kinase (ALK) have positioned ALK as the only mutated oncogene tractable for targeted therapy in neuroblastoma. Cells with these mutations respond to lorlatinib in pre-clinical studies, providing the rationale for a first-in-child Phase 1 trial (NCT03107988) in patients with ALK-driven neuroblastoma. To track evolutionary dynamics and heterogeneity of tumors, and to detect early emergence of lorlatinib resistance, we collected serial circulating tumor DNA samples from patients enrolled on this trial. Here we report the discovery of off-target resistance mutations in 11 patients (27%), predominantly in the RAS-MAPK pathway. We also identify newly acquired secondary compound ALK mutations in 6 (15%) patients, all acquired at disease progression. Functional cellular and biochemical assays and computational studies elucidate lorlatinib resistance mechanisms. Our results establish the clinical utility of serial circulating tumor DNA sampling to track response and progression and to discover acquired resistance mechanisms that can be leveraged to develop therapeutic strategies to overcome lorlatinib resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Neuroblastoma , Humanos , Aminopiridinas/uso terapêutico , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/genética , Resistencia a Medicamentos Antineoplásicos/genética , Lactamas Macrocíclicas/uso terapêutico , Neoplasias Pulmonares/genética , Mutação , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Inibidores de Proteínas Quinases/uso terapêutico
4.
Sci Diabetes Self Manag Care ; 48(6): 492-504, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36350066

RESUMO

PURPOSE: The purpose of the study was to investigate the feasibility and acceptability of phone-delivered cognitive behavioral therapy (CBT) combined with an adjunctive smartphone application CBT MobileWork-DM© to improve self-management of type 2 diabetes mellitus (T2DM). METHODS: Participants were 12 patients with T2DM on antihyperglycemic medication and had an A1C level of 8 or greater. A randomized controlled pilot study assessed treatment as usual (TAU) T2DM care versus a phone-delivered CBT (6, 8, or 12 weekly sessions) augmented with a CBT skills practice smartphone application. The CBT telehealth intervention addressed T2DM self-management and diabetes distress. Electronic and self-report medication taking, diabetes-related distress, and A1C were assessed at baseline and post-intervention. RESULTS: After 16 weeks, a decrease in A1C and distress levels was observed in all 3 CBT phone groups and TAU group. The group with the most improvement was the 12-week CBT group, which had the greatest mean decrease in A1C (-2.33) and diabetes distress (-31.67). The TAU group exhibited a mean decrease of -2.15 and -21 for A1C and diabetes distress, respectively. The overall rate of completion for phone CBT sessions across the 3 CBT groups was 83%. CONCLUSION: This study demonstrates that telehealth CBT augmented with a smartphone application is feasible and acceptable. Patients demonstrated improvements in both T2DM management and distress.


Assuntos
Terapia Cognitivo-Comportamental , Diabetes Mellitus Tipo 2 , Telemedicina , Humanos , Projetos Piloto , Diabetes Mellitus Tipo 2/terapia , Hemoglobinas Glicadas , Smartphone
5.
Fed Pract ; 38(Suppl 3): S52-S56, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34733096

RESUMO

PURPOSE: High-dose-rate (HDR) brachytherapy (BT) is a well-tolerated and effective treatment for prostate cancer. There is limited research, however, investigating toxicity outcomes with HDRBT treatment among veterans. The objective of this study is to assess the impact on health-related quality of life (hrQOL) and physician-graded toxicities associated with HDRBT as monotherapy among veterans treated at Edward Hines, Jr. Veterans Affairs Hospital in Hines, Illinois. METHODS: Between 2016 and 2019, 74 veterans with low- or intermediate-risk prostate cancer were treated with HDRBT as monotherapy with 27 Gy in 2 fractions, delivered over 2 implants. Veteran-reported hrQOL in the genitourinary (GU), gastrointestinal (GI), and sexual domains was assessed using the International Prostate Symptoms Score (IPSS) and Expanded Prostate Cancer Index Composite (EPIC-26) questionnaire. Mixed linear effect models were used to assess differences in the hrQOL scores at follow-up compared with baseline scores. Statistically significant differences in hrQOL scores from baseline were further assessed for clinical significance, using minimal clinically important difference (MCID) evaluations. RESULTS: Median follow-up was 18 months. Veterans reported declines in GU, GI, and sexual hrQOL scores immediately after treatment, with the IPSS and EPIC-26 hrQOL scores all displaying significant decrease from baseline over time. The majority of the declines in hrQOL scores met criteria for MCID. These hrQOL scores trended toward a return to baseline, with the EPIC-26 urinary obstruction score returning to baseline at the 18-month follow-up assessment and the EPIC-26 bowel score returning to baseline at the 12-month follow-up. The IPSS, urinary incontinence, and sexual scores did not return to baseline at 18 months. The grade 2 maximum physician-graded GU, GI, and sexual toxicity rates were 65%, 5%, and 53%, respectively. There was 1 incidence of grade 3 GU toxicity but no grade 3 GI or sexual toxicity. CONCLUSIONS: HDRBT as monotherapy is a well-tolerated treatment option for veterans with low- or intermediate-risk prostate cancer, with favorable veteran-reported and physician-graded toxicities. Veterans should be educated about HDRBT as an option when counseled regarding treatment for localized prostate cancer.

6.
Brachytherapy ; 20(1): 66-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33160849

RESUMO

PURPOSE: High-dose-rate (HDR) prostate brachytherapy uses volumetric imaging for treatment planning. Our institution transitioned from computed tomography (CT)-based planning to MRI-based planning with the hypothesis that improved visualization could reduce treatment-related toxicity. This study aimed to compare the patient-reported health-related quality of life (hrQOL) and physician-graded toxicity outcomes of CT-based and MRI-based HDR prostate brachytherapy. METHODS: From 2016 to 2019, 122 patients with low- or intermediate-risk prostate cancer were treated with HDR brachytherapy as monotherapy. Patients underwent CT only or CT and MRI imaging for treatment planning and were grouped per treatment planning imaging modality. Patient-reported hrQOL in the genitourinary (GU), gastrointestinal (GI), and sexual domains was assessed using International Prostate Symptom Score and Expanded Prostate Cancer Index Composite Short Form-26 questionnaires. Baseline characteristics, changes in hrQOL scores, and physician-graded toxicities were compared between groups. RESULTS: The median follow-up was 18 months. Patient-reported GU, GI, and sexual scores worsened after treatment but returned toward baseline over time. The CT cohort had a lower baseline mean International Prostate Symptom Score (5.8 vs. 7.8, p = 0.03). The other patient-reported GU and GI scores did not differ between groups. Overall, sexual scores were similar between the CT and MRI cohorts (p = 0.08) but favored the MRI cohort at later follow-up with a smaller decrease in Expanded Prostate Cancer Index Composite Short Form-26 sexual score from baseline at 18 months (4.9 vs. 19.8, p = 0.05). Maximum physician-graded GU, GI, and sexual toxicity rates of grade ≥2 were 68%, 3%, and 53%, respectively, with no difference between the cohorts (p = 0.31). CONCLUSION: Our study shows that CT- and MRI-based HDR brachytherapy results in similar rates of GU and GI toxicity. MRI-based planning may result in improved erectile function recovery compared with CT-based planning.


Assuntos
Braquiterapia , Neoplasias da Próstata , Braquiterapia/métodos , Humanos , Imageamento por Ressonância Magnética , Masculino , Medidas de Resultados Relatados pelo Paciente , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Qualidade de Vida , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
7.
Anal Chem ; 92(9): 6349-6357, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275820

RESUMO

For a more comprehensive characterization of molecular heterogeneities of matter, multimodal mass spectrometry imaging must be developed to take advantage of the complementarity of information available through different ionization mechanisms. We report the design, implementation, and performance validation of a laser desorption imaging interface composed of add-on components that adapt a commercial Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) imaging interface for dual imaging of Picosecond Infrared Laser Mass Spectrometry (PIRL-MS) with DESI-MS. The interface utilizes hardware elements and data analysis pipelines already established for DESI-MS imaging, and was further validated in cancer margin assessments using human medulloblastoma cancers. The PIRL-MS images were robust and reproducible across multiple experimental runs on independently prepared xenograft tumors, and could be segmented into cancer and healthy regions in concordance with pathology using a variety of supervised and unsupervised clustering methods. The spectral quality and complexity obtained with this interface were examined with infiltrating and noninfiltrating tumors, and were comparable to other mass spectrometry analysis interfaces. The average PIRL-MS spectra from spatially resolved images could be used for robust cancer m/z model building to classify medulloblastoma cancer from healthy tissue without any misclassifications, an observation that held true over close to 70 sampling data points. While the unsupervised spectral analysis methods suggested a slight suppression of signal in the phospholipid range compared to the hand-held configuration, these changes were insufficient to hamper utility in cancer margin assessment with spatially resolved data obtained with our interface. Dual PIRL-MS and DESI-MS imaging of consecutive sections, as suggested by multivariate loading plots, revealed highly complementary molecular information with m/z values identifiable with one desorption method sufficient to reveal cancer regions being absent in another, further emphasizing the need for effective hardware and software interfaces for dual mass spectrometry imaging.


Assuntos
Neoplasias Cerebelares/diagnóstico , Meduloblastoma/diagnóstico , Animais , Humanos , Camundongos , Neoplasias Experimentais/diagnóstico , Impressão Tridimensional , Espectrometria de Massas por Ionização por Electrospray
8.
Chem Sci ; 11(33): 8723-8735, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34123126

RESUMO

Integration between a hand-held mass spectrometry desorption probe based on picosecond infrared laser technology (PIRL-MS) and an optical surgical tracking system demonstrates in situ tissue pathology from point-sampled mass spectrometry data. Spatially encoded pathology classifications are displayed at the site of laser sampling as color-coded pixels in an augmented reality video feed of the surgical field of view. This is enabled by two-way communication between surgical navigation and mass spectrometry data analysis platforms through a custom-built interface. Performance of the system was evaluated using murine models of human cancers sampled in situ in the presence of body fluids with a technical pixel error of 1.0 ± 0.2 mm, suggesting a 84% or 92% (excluding one outlier) cancer type classification rate across different molecular models that distinguish cell-lines of each class of breast, brain, head and neck murine models. Further, through end-point immunohistochemical staining for DNA damage, cell death and neuronal viability, spatially encoded PIRL-MS sampling is shown to produce classifiable mass spectral data from living murine brain tissue, with levels of neuronal damage that are comparable to those induced by a surgical scalpel. This highlights the potential of spatially encoded PIRL-MS analysis for in vivo use during neurosurgical applications of cancer type determination or point-sampling in vivo tissue during tumor bed examination to assess cancer removal. The interface developed herein for the analysis and the display of spatially encoded PIRL-MS data can be adapted to other hand-held mass spectrometry analysis probes currently available.

9.
Sci Rep ; 9(1): 14569, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31602000

RESUMO

Despite advances in therapy, glioblastoma remains an incurable disease with a dismal prognosis. Recent studies have implicated cancer stem cells within glioblastoma (glioma stem cells, GSCs) as mediators of therapeutic resistance and tumor progression. In this study, we investigated the role of the transforming growth factor-ß (TGF-ß) superfamily, which has been found to play an integral role in the maintenance of stem cell homeostasis within multiple stem cell systems, as a mediator of stem-like cells in glioblastoma. We find that BMP and TGF-ß signaling define divergent molecular and functional identities in glioblastoma, and mark relatively quiescent and proliferative GSCs, respectively. Treatment of GSCs with BMP inhibits cell proliferation, but does not abrogate their stem-ness, as measured by self-renewal and tumorigencity. Further, BMP pathway activation confers relative resistance to radiation and temozolomide chemotherapy. Our findings define a quiescent cancer stem cell population in glioblastoma that may be a cellular reservoir for tumor recurrence following cytotoxic therapy.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Encefálicas/terapia , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/terapia , Células-Tronco Neoplásicas/citologia , Animais , Antineoplásicos/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Glioma , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/patologia , Transplante de Neoplasias , Fenótipo , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Temozolomida/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
10.
Cancer Res ; 79(16): 4057-4071, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31292163

RESUMO

Glioblastoma is the most common primary brain tumor in adults. While the introduction of temozolomide chemotherapy has increased long-term survivorship, treatment failure and rapid tumor recurrence remains universal. The transcriptional regulatory protein, inhibitor of DNA-binding-1 (ID1), is a key regulator of cell phenotype in cancer. We show that CRISPR-mediated knockout of ID1 in glioblastoma cells, breast adenocarcinoma cells, and melanoma cells dramatically reduced tumor progression in all three cancer systems through transcriptional downregulation of EGF, which resulted in decreased EGFR phosphorylation. Moreover, ID1-positive cells were enriched by chemotherapy and drove tumor recurrence in glioblastoma. Addition of the neuroleptic drug pimozide to inhibit ID1 expression enhanced the cytotoxic effects of temozolomide therapy on glioma cells and significantly prolonged time to tumor recurrence. Conclusively, these data suggest ID1 could be a promising therapeutic target in patients with glioblastoma. SIGNIFICANCE: These findings show that the transcriptional regulator ID1 is critical for glioblastoma initiation and chemoresistance and that inhibition of ID1 enhances the effect of temozolomide, delays tumor recurrence, and prolongs survival.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/tratamento farmacológico , Proteína 1 Inibidora de Diferenciação/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Proteína 1 Inibidora de Diferenciação/antagonistas & inibidores , Proteína 1 Inibidora de Diferenciação/genética , Melanoma/patologia , Camundongos Endogâmicos NOD , Fosforilação , Pimozida/administração & dosagem , Pimozida/farmacologia , Temozolomida/administração & dosagem , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Res ; 79(9): 2426-2434, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30890619

RESUMO

Medulloblastoma (MB) is a pediatric malignant brain tumor composed of four different subgroups (WNT, SHH, Group 3, Group 4), each of which are a unique biological entity with distinct clinico-pathological, molecular, and prognostic characteristics. Although risk stratification of patients with MB based on molecular features may offer personalized therapies, conventional subgroup identification methods take too long and are unable to deliver subgroup information intraoperatively. This limitation prevents subgroup-specific adjustment of the extent or the aggressiveness of the tumor resection by the neurosurgeon. In this study, we investigated the potential of rapid tumor characterization with Picosecond infrared laser desorption mass spectrometry (PIRL-MS) for MB subgroup classification based on small molecule signatures. One hundred and thirteen ex vivo MB tumors from a local tissue bank were subjected to 10- to 15-second PIRL-MS data collection and principal component analysis with linear discriminant analysis (PCA-LDA). The MB subgroup model was established from 72 independent tumors; the remaining 41 de-identified unknown tumors were subjected to multiple, 10-second PIRL-MS samplings and real-time PCA-LDA analysis using the above model. The resultant 124 PIRL-MS spectra from each sampling event, after the application of a 95% PCA-LDA prediction probability threshold, yielded a 98.9% correct classification rate. Post-ablation histopathologic analysis suggested that intratumoral heterogeneity or sample damage prior to PIRL-MS sampling at the site of laser ablation was able to explain failed classifications. Therefore, upon translation, 10-seconds of PIRL-MS sampling is sufficient to allow personalized, subgroup-specific treatment of MB during surgery. SIGNIFICANCE: This study demonstrates that laser-extracted lipids allow immediate grading of medulloblastoma tumors into prognostically important subgroups in 10 seconds, providing medulloblastoma pathology in an actionable manner during surgery.


Assuntos
Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/patologia , Cuidados Intraoperatórios , Meduloblastoma/classificação , Meduloblastoma/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neoplasias Cerebelares/cirurgia , Humanos , Meduloblastoma/cirurgia
12.
J Control Release ; 281: 29-41, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29753957

RESUMO

Magnetic Resonance Image-guided Focused Ultrasound (MRgFUS) has been used to achieve transient blood brain barrier (BBB) opening without tissue injury. Delivery of a targeted ultrasonic wave causes an interaction between administered microbubbles and the capillary bed resulting in enhanced vessel permeability. The use of MRgFUS in the brainstem has not previously been shown but could provide value in the treatment of tumours such as Diffuse Intrinsic Pontine Glioma (DIPG) where the intact BBB has contributed to the limited success of chemotherapy. Our primary objective was to determine whether the use of MRgFUS in this eloquent brain region could be performed without histological injury and functional deficits. Our secondary objective was to select an effective chemotherapeutic against patient derived DIPG cell lines and demonstrate enhanced brainstem delivery when combined with MRgFUS in vivo. Female Sprague Dawley rats were randomised to one of four groups: 1) Microbubble administration but no MRgFUS treatment; 2) MRgFUS only; 3) MRgFUS + microbubbles; and 4) MRgFUS + microbubbles + cisplatin. Physiological assessment was performed by monitoring of heart and respiratory rates. Motor function and co-ordination were evaluated by Rotarod and grip strength testing. Histological analysis for haemorrhage (H&E), neuronal nuclei (NeuN) and apoptosis (cleaved Caspase-3) was also performed. A drug screen of eight chemotherapy agents was conducted in three patient-derived DIPG cell lines (SU-DIPG IV, SU-DIPG XIII and SU-DIPG XVII). Doxorubicin was identified as an effective agent. NOD/SCID/GAMMA (NSG) mice were subsequently administered with 5 mg/kg of intravenous doxorubicin at the time of one of the following: 1) Microbubbles but no MRgFUS; 2) MRgFUS only; 3) MRgFUS + microbubbles and 4) no intervention. Brain specimens were extracted at 2 h and doxorubicin quantification was conducted using liquid chromatography mass spectrometry (LC/MS). BBB opening was confirmed by contrast enhancement on T1-weighted MR imaging and positive Evans blue staining of the brainstem. Normal cardiorespiratory parameters were preserved. Grip strength and Rotarod testing demonstrating no decline in performance across all groups. Histological analysis showed no evidence of haemorrhage, neuronal loss or increased apoptosis. Doxorubicin demonstrated cytotoxicity against all three cell lines and is known to have poor BBB permeability. Quantities measured in the brainstem of NSG mice were highest in the group receiving MRgFUS and microbubbles (431.5 ng/g). This was significantly higher than in mice who received no intervention (7.6 ng/g). Our data demonstrates both the preservation of histological and functional integrity of the brainstem following MRgFUS for BBB opening and the ability to significantly enhance drug delivery to the region, giving promise to the treatment of brainstem-specific conditions.


Assuntos
Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Glioma/tratamento farmacológico , Ondas Ultrassônicas , Animais , Antineoplásicos/uso terapêutico , Encéfalo/metabolismo , Tronco Encefálico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Liberação Controlada de Fármacos , Feminino , Camundongos SCID , Microbolhas , Permeabilidade , Ratos Sprague-Dawley , Distribuição Tecidual
13.
Nanomedicine ; 14(4): 1137-1148, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471172

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor resulting in high rates of morbidity and mortality. A strategy to increase the efficacy of available drugs and enhance the delivery of chemotherapeutics through the blood brain barrier (BBB) is desperately needed. We investigated the potential of Cisplatin conjugated gold nanoparticle (GNP-UP-Cis) in combination with MR-guided Focused Ultrasound (MRgFUS) to intensify GBM treatment. Viability assays demonstrated that GNP-UP-Cis greatly inhibits the growth of GBM cells compared to free cisplatin and shows marked synergy with radiation therapy. Additionally, increased DNA damage through γH2AX phosphorylation was observed in GNP-UP-Cis treated cells, along with enhanced platinum concentrations. In vivo, GNP-UP-Cis greatly reduced the growth of GBM tumors and MRgFUS led to increased BBB permeability and GNP-drug delivery in brain tissue. Our studies suggest that GNP-Cis conjugates and MRgFUS can be used to focally enhance the delivery of targeted chemotherapeutics to brain tumors.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cisplatino/uso terapêutico , Glioblastoma/tratamento farmacológico , Ouro/química , Nanopartículas Metálicas/química , Ondas Ultrassônicas , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/metabolismo , Cisplatino/administração & dosagem , Cisplatino/química , Cisplatino/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID , Microscopia Confocal
14.
Oncotarget ; 8(47): 82217-82230, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137258

RESUMO

Glioblastoma recurrence after aggressive therapy typically occurs within six months, and patients inevitably succumb to their disease. Tumor recurrence is driven by a subpopulation of cancer stem cells in glioblastoma (glioblastoma stem-like cells, GSCs), which exhibit resistance to cytotoxic therapies, compared to their non-stem-cell counterparts. Here, we show that the Cox-2 and Wnt signaling pathways are aberrantly activated in GSCs and interact to maintain the cancer stem cell identity. Cox-2 stimulates GSC self-renewal and proliferation through prostaglandin E2 (PGE2), which in turn activates the Wnt signaling pathway. Wnt signaling underlies PGE2-induced GSC self-renewal and independently directs GSC self-renewal and proliferation. Inhibition of PGE2 enhances the effect of temozolomide on GSCs, but affords only a modest survival advantage in a xenograft model in the setting of COX-independent Wnt activation. Our findings uncover an aberrant positive feedback interaction between the Cox-2/PGE2 and Wnt pathways that mediates the stem-like state in glioblastoma.

15.
Chem Sci ; 8(9): 6508-6519, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989676

RESUMO

Medulloblastoma (MB), the most prevalent malignant childhood brain tumour, consists of at least 4 distinct subgroups each of which possesses a unique survival rate and response to treatment. To rapidly determine MB subgroup affiliation in a manner that would be actionable during surgery, we subjected murine xenograft tumours of two MB subgroups (SHH and Group 3) to Mass Spectrometry (MS) profiling using a handheld Picosecond InfraRed Laser (PIRL) desorption probe and interface developed by our group. This platform provides real time MS profiles of tissue based on laser desorbed lipids and small molecules with only 5-10 seconds of sampling. PIRL-MS analysis of ex vivo MB tumours offered a 98% success rate in subgroup determination, observed over 194 PIRL-MS datasets collected from 19 independent tumours (∼10 repetitions each) utilizing 6 different established MB cell lines. Robustness was verified by a 5%-leave-out-and-remodel test. PIRL ablated tissue material was collected on a filter paper and subjected to high resolution LC-MS to provide ion identity assignments for the m/z values that contribute most to the statistical discrimination between SHH and Group 3 MB. Based on this analysis, rapid classification of MB with PIRL-MS utilizes a variety of fatty acid chains, glycerophosphates, glycerophosphoglycerols and glycerophosphocholines rapidly extracted from the tumours. In this work, we provide evidence that 5-10 seconds of sampling from ex vivo MB tissue with PIRL-MS can allow robust tumour subgroup classification, and have identified several biomarker ions responsible for the statistical discrimination of MB Group 3 and the SHH subgroup. The existing PIRL-MS platform used herein offers capabilities for future in vivo use.

16.
Sci Rep ; 7(1): 468, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28352074

RESUMO

Spatially Targeted Mass Spectrometry (MS) analysis using survey scans with an imaging modality often requires consecutive tissue slices, because of the tissue damage during survey scan or due to incompatible sample preparation requirements between the survey modality and MS. We report two spatially targeted MS analysis workflows based on polarized light imaging guidance that use the same tissue sample for survey and targeted analysis. The first workflow is applicable for thin-slice analysis, and uses transmission-polarimetry-guided Desorption ElectroSpray Ionization Mass Spectrometry (DESI-MS), and confirmatory H&E histopathology analysis on the same slice; this is validated using quantitative digital pathology methods. The second workflow explores a polarimetry-guided MS platform for thick tissue assessment by developing reflection-mode polarimetric imaging coupled with a hand-held Picosecond InfraRed Laser (PIRL) MS ablation probe that requires minimal tissue removal to produce detectable signal. Tissue differentiation within 5-10 s of sampling with the hand-held probe is shown using multivariate statistical methods of the MS profiles. Both workflows were tasked with differentiating necrotic cancer sites from viable cancers using a breast tumour model, and their performance was evaluated. The use of the same tissue surface addresses mismatches in guidance due to intrinsic changes in tissue morphology over consecutive sections.


Assuntos
Histocitoquímica/métodos , Espectrometria de Massas , Animais , Diagnóstico por Imagem/métodos , Humanos , Processamento de Imagem Assistida por Computador , Espectrometria de Massas/métodos , Camundongos , Espectrometria de Massas por Ionização por Electrospray/métodos , Fluxo de Trabalho
17.
J Neurooncol ; 126(1): 69-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26464146

RESUMO

Glioblastoma is the most common and deadly type of brain cancer. Over the past decade, several divergent genetic pathways have been implicated in the initiation, progression and clinical outcome of this disease. As our understanding of GBM expands and identifies actionable targets specific to individual tumors, there will be a pressing need for the development of new tools that will maximize the use of limited clinical samples to enable the employment of personalized care paradigms. We used PrimePCR validated assays to generate a custom real-time PCR screening panel, containing 74 previously published mRNA targets showing gene expression changes in glioblastoma, and five house-keeping genes. A cohort of 19 frozen brain specimens were analyzed, including WHO Grade II oligodendroglioma (n = 3), WHO Grade II astrocytoma (n = 2), WHO Grade III astrocytoma (n = 1), and glioblastoma (n = 13). Four normal brain samples were also analyzed. We performed RNA extraction, followed by cDNA synthesis, multiplexed pre-amplification and SYBR-based qPCR, to generate expression profiles on all samples. We demonstrated that the workflow shows high tolerance to variation in RNA quality (RIN 8.5-4) and high sensitivity in detection. cDNA input that is equivalent to 3 ng of starting RNA was sufficient to conduct accurate semiquantitative analysis of the panel of 79 assays. Using principal component analysis, we were able to accurately separate glioblastoma from low-grade glioma. The two WHO Grade III tumors analyzed clustered with glioblastoma, but showed more similarity to Grade II gliomas. In this study, we have shown the feasibility of consolidating high-throughput data into a single functional panel capable of accurately classifying glioma specimens based solely on semiquantitative gene expression profiling.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Biomarcadores Tumorais/genética , Feminino , Humanos , Modelos Logísticos , Masculino , Reação em Cadeia da Polimerase , Análise de Componente Principal , RNA Mensageiro/metabolismo
18.
Cancer Res ; 74(13): 3546-55, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24753542

RESUMO

RAD51 is the central protein that catalyzes DNA repair via homologous recombination, a process that ensures genomic stability. RAD51 protein is commonly expressed at high levels in cancer cells relative to their noncancerous precursors. High levels of RAD51 expression can lead to the formation of genotoxic RAD51 protein complexes on undamaged chromatin. We developed a therapeutic approach that exploits this potentially toxic feature of malignancy, using compounds that stimulate the DNA-binding activity of RAD51 to promote cancer cell death. A panel of immortalized cell lines was challenged with the RAD51-stimulatory compound RS-1. Resistance to RS-1 tended to occur in cells with higher levels of RAD54L and RAD54B, which are Swi2/Snf2-related translocases known to dissociate RAD51 filaments from dsDNA. In PC3 prostate cancer cells, RS-1-induced lethality was accompanied by the formation of microscopically visible RAD51 nuclear protein foci occurring in the absence of any DNA-damaging treatment. Treatment with RS-1 promoted significant antitumor responses in a mouse model, providing proof-of-principle for this novel therapeutic strategy.


Assuntos
Benzamidas/farmacologia , DNA Helicases/genética , Neoplasias/genética , Proteínas Nucleares/genética , Rad51 Recombinase/genética , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/metabolismo , DNA Helicases/biossíntese , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Proteínas de Ligação a DNA , Células HEK293 , Recombinação Homóloga/genética , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Proteínas Nucleares/biossíntese , Ligação Proteica , Interferência de RNA , Rad51 Recombinase/biossíntese
19.
Am J Physiol Heart Circ Physiol ; 306(1): H88-100, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186100

RESUMO

Although the development of abnormal myocardial mechanics represents a key step during the transition from hypertension to overt heart failure (HF), the underlying ultrastructural and cellular basis of abnormal myocardial mechanics remains unclear. We therefore investigated how changes in transverse (T)-tubule organization and the resulting altered intracellular Ca(2+) cycling in large cell populations underlie the development of abnormal myocardial mechanics in a model of chronic hypertension. Hearts from spontaneously hypertensive rats (SHRs; n = 72) were studied at different ages and stages of hypertensive heart disease and early HF and were compared with age-matched control (Wistar-Kyoto) rats (n = 34). Echocardiography, including tissue Doppler and speckle-tracking analysis, was performed just before euthanization, after which T-tubule organization and Ca(2+) transients were studied using confocal microscopy. In SHRs, abnormalities in myocardial mechanics occurred early in response to hypertension, before the development of overt systolic dysfunction and HF. Reduced longitudinal, circumferential, and radial strain as well as reduced tissue Doppler early diastolic tissue velocities occurred in concert with T-tubule disorganization and impaired Ca(2+) cycling, all of which preceded the development of cardiac fibrosis. The time to peak of intracellular Ca(2+) transients was slowed due to T-tubule disruption, providing a link between declining cell ultrastructure and abnormal myocardial mechanics. In conclusion, subclinical abnormalities in myocardial mechanics occur early in response to hypertension and coincide with the development of T-tubule disorganization and impaired intracellular Ca(2+) cycling. These changes occur before the development of significant cardiac fibrosis and precede the development of overt cardiac dysfunction and HF.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Hipertensão/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/ultraestrutura , Sarcolema/ultraestrutura , Animais , Pressão Sanguínea , Cálcio/metabolismo , Sinalização do Cálcio , Fibrose/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/patologia , Frequência Cardíaca , Hipertensão/diagnóstico por imagem , Hipertensão/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...